71

CHAPTER

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; and if the resources
are not available at that time, the process enters a waiting state. Sometimes,
a waiting process is never again able to change state, because the resources
it has requested are held by other waiting processes. This situation is called
a deadlock. We discussed this issue briefly in Chapter 6 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: “When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that an operating system can use to
prevent or deal with deadlocks. Most current operating systems do not provide
deadlock-prevention facilities, but such features will probably be added soon.
Deadlock problems can only become more common, given current trends,
including larger numbers of processes, muitithreaded programs, many more
resources within a system, and an emphasis on long-lived file and database
servers rather than batch systems.

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into several
types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and 1/0 devices (such as printers and DVD drives)are examples
of resource types. If a system has two CPUs, then the resource type CPU has
two instances. Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in tha same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the nasement,

237

238

Chapter 7

then people on the ninth floor may not see both printers as cquivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the systern. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

Request. If the request cannot be granted immediately (for example, if the
resource is being used by another process), then the requesting process
must wait until it can acquire the resource.

Use. The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

Release. The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 2. Examples are the request () and release() device, open() and
close () file, and allocate() and free () memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wait () and signal() operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel-
managed resource by a process or thread, the operating system checks to

‘make sure that the process has requested and has been allocated the resource.

A gystem table records whether each resource is free or allocated; for each
resource that is allocated, the table also records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlock state when every process in the set is
waliting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resoursces (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the IPC facilities discussed in Chapter 3).

To illustrate a deadlock state, consider a system with three CD RW drives.
Suppose each of three processes holds one of these CD RW drives. If each
process now requests another drive, the three processes will be in a deadlock
state. Each is waiting for the event “CD RW is released,” which can be caused
only by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
asystem with one printer and one DVD drive. Suppose that process ; isholding
the DVD and process P; is holding the printer. If P; requests the printer and P;
requests the DVD drwe a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi-
dates for deadlock because multiple threads can compete for shared resources.

/25 DEEEEINTIE R R R 239

/* thread.one runs in this function */
void *dowork.cne(void *param)
{
pthread.mutex_ lock (&firstmutex) ;
pthreac¢ mutex.lock (&second mutex) ;
/it
* Do some work
*y
pthread mutex.unlock (&secondmutex) ;
pthreadmutex unlock (&first mutex) ;

pthread exit {0);

}

/* thread twe runs in this function */
void *dowork-two(void *param}
{
pthread mutex.lock (&second mutex) ;
pthread.mutex lock (&first mutex) ;
[**
* Do some work
*/
pthread mutexunlock{&first mutex) ;
pthread mutex unlock {&second mutex) ;

pthread_exit (0);

Figure 7.1 Deadlock example.

Let's see how deadlock can occur in a multithreaded Pthread
program using mutex locks. The pthread mutex_init() function
initializes an unlocked mutex. Mutex locks are acquired and released
using pthread mutex lock(} and pthread mutex unlock(), respec-
tively. If a thread attempts to acquire a locked mutex, the call to
pthread mutex_lock() blocks the thread until the owner of the mutex
lock invokes pthread mutex_unlock ().

Two mutex locks are created in the following code example:

/* Create and initialize the mutex locks */
pthread mutex_t first_mutex;
pthread mutex_t second mutex;

pthread mutex_init (&first mutex,NULL);
pthread mutex_init (4second mutex,NULL);

Next, two threads—thread_one and thread_two-—are created, and both these
threads have access to both mutex locks. thread_one and thread_two run in
the functions do_work.one() and do.work two{), respectively, as shown in
Figure 7.1.

240

7.2

Chapter /

In this example, thread one attempts to acquire the mutex locks in the
order (1) first mutex, (2) second mutex, while thread_two atternpts to acquire
the mutex locks in the order (1) second mutex, (2) first.mutex. Deadlock
is possible if thread_one acquires first mutex while thread_two aacquites
second mutex.

Note that, even though deadlock is possible, it will not occur if thread one
is able to acquire and release the mutex locks for first mutex and sec-
ond mutex before thread two attempts to acquire the locks. This example
illustrates a problem with handling deadlocks: It is difficult to identifv and
test for deadlocks that may occur only under certain circumstances.

In a deadiock. processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we ook more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

Mutual exclusion. At least one resource must be held in a nonsharable
maode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released. .

Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

No preemption. Resotirces cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.

Circular wait. A set {Py, Py, ..., P,} of waiting processes must exist such
that P is waiting for a resource held by Py, Py is waiting for a resource
held by P, ..., P, is waiting for a resource held by P, and P, is waiting
for a resource held by P

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-watit condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately.

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types

7.2 pLY

Figure 7.2 Resource-allocation graph,

of nodes: P = { P}, i, ..., P}, the set consisting of all the active processes in the
system, and R = {Ry, R, ..., R}, the set consisting of all resource types in the
system.

A directed edge from process P; to resource type R; isdenoted by P, — R;;
it signifies that process P; has requested an instance of resource type R; and
is currently waiting for that resource. A directed edge from resource type R;
to process I is denoted by R, — [; it signifies that an instance of resource
type R; has been allocated to process Fi. A directed edge P, — R is called a
request edge; a directed edge R; — P; is called an assignment edge.

Pictorially, we represent each process P; as a circle and each resource type
R; as a rectangle. Since resource type R; may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle R;, whercas an assignment edge must also
designate one of the dots in the rectangle.

When process P requests an instance of resource type R;, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneonsiy transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edgeé isdeteted.™ -

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

The sets P, R, anc} E:

= P={P, P, P5}

°© R={Ry, Ra, R, Ry}

SE={Pi— R, P,— Ry, Ry = P, R > P, R — P, Ry — P}
Resource instances:

° One instance of resource type Ry

o Two instances of resource type Ry

242

Chapter7 i it

o One instance of resource type R3

o Three instances of resource type Ry
+ Process states:

o Process P is holding an instance of resource type R; and is waiting for
an instance of resource type R;.

o Process P; is holding an instance of R; and an instance of R; and is
waiting for an instance of Rj.

o Process Pj is holding an instance of Rs.

Given the definition of a resource-aljocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. i
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process P3 requests an instance of resource
type Rs. Since no resource instance is currently available, a request edge P; —
Ry is added to the graph {Figure 7.3). At this point, two minimal cycles exist in
the system:

P1—> R;—) Pz% R3—> P3—> Rz% P1
Pz—b R3—> P3—> Rz-> P2

A, A,
NEES

SERONRG

53 be
R .
A,

Figure 7.3 Resource-allocation graph with a deadlock.

7.3

7.3 e R 243

./
LA
.)
P
R,
~
o
®
Py}

Figure 7.4 Resource-allocation graph with & cycle but no deadiock.

Processes Py, I%, and P; are deadlocked. Process P; is waiting for the resource
Rs, which is held by process M. Process P; is waiting for either process Py or
process I to release resource Ry. In addition, process Py is waiting for process
P to release resource R.

Now consider the resource-allocation graph in Figure 7.4, In this example,
we also have a cycle

- R - P Rp—

However, there is no deadiock. Observe that process P, may release its instance
of resource type Ry. That resource can then be allocated to Py, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

B . H 7 N L

Generally speaking, we can deal with the deadlock problem in one of three
ways:

» We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlock state.

We can allow the system to enter a deadlock state, detect it, and recover.

We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including UNIX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
However, before proceeding, we should mention that some researchers have

244

7.4

Chapter 7

argued that none of the basic approaches alone is appropriate for the entire
spectrum of resource-allocation problems in operating systems. The basic
approaches can be combined, however, allowing us to select an optimal
approach for each class of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in Section
74

Deadlock avoidance requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently atlo-
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

If a system neither ensures that a deadlock will never occur nor provides
a mechanism for deadlock detection and recovery, then we may arrive ai
a situation where the system is in a deadlocked state yet has no way of
recognizing what has happened. In this case, the undetected deadlock will
result in deterioration of the system’s performance, because resources are being
held by processes that cannot run and because more and more processes, as
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.

Although this method may not seem to be a viable approach to the deadlock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, whichmust be used constantly. Also, in some circumstances,
a system is in a frozen state but not in a deadlocked state. We see this situation,
for exemple, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

As we noted in Section 7.2.1, for a deadiock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4 - 245

7.4.1 Mutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
cxample, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted sirmultaneous access to the file. A process never
needs to wait for a sharable resource. in general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable.

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting re<ources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the DvD drive,
disk file, and printer. Tt will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases
both the DVD drive and the disk file. The process must then again request the
diskfile and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza-
tion may be low, since resources may be allocated but unused for a long period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printer, only if we can be sure that our
data will remain on the disk file. If we cannot be assured that they will, then
we must request all resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at lcast one of the resources
that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the folowing protocol. If a process is holding some
resources and requests another resource that cannot be immediately allocated

246

Chapter 7

to it (that is, the process must wait), then all resources currently being held
are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is
wailing. The process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is waiting for additional
resources. It 5o, we preempt the desired resources from the waiting process and
allocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
requests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting,

This protecol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = { Ry, Ry, ..., R} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R — N, where N is the
set of natural numbers. For example, if the set of resource types R includes
tape drives, disk drives, and printers, then the function F might be defined as
follows:

F(tape drive) = 1
F(disk drive) = 5
F(printer} = 12

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process ¢an initially request any number of instances of a resource type—
say, R;. After that, the process can request instances of resource type R, if and
only if F(R;) > F(R;). If several instances of the same resource type are needed,
a single request for all of them must be issued. For example, using the function
defined previously, a process that wants to use the tape drive and printer at
the same time must first request the tape drive and then request the printer.
Alternatively, we can require that, whenever a process requests an instance of
resource type R, it has released any resources R; such that F(R) > F(R;).

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proofby contradiction). Let the set of processes involved in the circular wait be

7.5

75 - Coaln 247

{Ps, P1, ..., P.}, where P; is waiting for a resource R;, which is held by process
Pi41. (Modulo arithmetic is used on the indexes, so that P, is waiting for
a resource R, held by Py.) Then, since process P is holding resource R;
while requesting resource R;,;, we must have F(R} < F(R; 1), for all i. But
this condition means that F(Ry) < E(R:) < ... < F(R,) < F(Ry). By transitivity,
F(Rp) < F{Ry), which is impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order, For example, if the
lock ordering in the Pthread program shown in Figure 7.1 was

F{first mutex)=1
F(second mutex) =5

then thread two could not request the locks out of order.

Keep in mind that developing an ordering, or hierarchy, in itself does not
prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal order of usage of the resources in a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) < F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on BSD versions of UNIX such as FreeBSD, is known as
witness. Witness uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let’s use the program shown in Figure 7.1 as an
example. Assume that thread one is the first to acquire the locks and does so in
the order (1) first mutex, (2) second mutex. Witness records the relationship
that first mutex must be acquired before second mutex. If thread two later
acquires the locks out of order, witness generates a warning message on the
system console.

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a systemn
with one tape drive and one printer, the system might need to know that
process I’ will request first the tape drive and then the printer betore releasing
both resources, whereas process & will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or

248

Chapter 7

not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this deciston the system consider the resources
currently available, the resources currently allocated to each process, and the
future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maxinnim number of resources of each type that it may need.
Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation stafe is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore tveo deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes
<Py, Py, ..., P> is a safe sequence for the current allocation state if, for each
F;, the resource requests that P; can still make can be satisfied by the currently
available resources plus the resources held by all P, withj < i In this situation,
if the resources that P; needs are not immediately available, then P; can wait
until all P; have finished. When they have finished, P; can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P; terminates, P;.| can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state nay lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources such
that a deadlock occurs: The behavior of the processes controls unsafe states.

unsafe

deadiock

Figure 7.5 Safe, unsafe, and deadlock state spaces.

7.5 s [N R 249

To illustrate, we consider a system with 12 magnetic tape drives and three
processes: Fy, P, and Pa. Process Py requites 10 tape drives, process P| may
need as many as 4 tape drives, and process P, may need up to 9 tape drives.
Suppase that, at time t, process Py is holding 5 tape drives, process Py is
holding 2 tape drives, and process P; is helding 2 tape drives, (Thus, there are
3 free tape drives.)

Maximum Necds Current Needs

Pg 10 3
P 4 2
P 9 2

At time #y, the system is in a safe state. The sequence < Py, Py, > satishies
the safety condition. Process P) can immediately be ailocated allits tape drives
and then return themn (the system will then have 5 available tape drives); then
process P can getall its tape drives and returin them (the system will then have
10 available tape drives); and finally process Ps can get all its tape drives and
return them (the system will then have all 12 tape.drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
fi, process P; requests and js allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P, can be allocated all its tape
drives. When it returns them, the system will have only 4 available tape drives,
Since process Iy is allocated 5 tape drives but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process Py must wait.
Similarly, process P, may request an additional 6 tape drives and have to wait,
resulting in a deadlock. Our mistake was in granting the request from process
P, for cne more tape drive. If we had made P> wait until either of the other
processes had finished and relcased its resotirces, ther we could have avoided
the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can he allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state,

In this scheme, if a process requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each resource
type, a variant of the resource-allocation graph defined in Seciien 7.2.2 can be
used for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge.
A claim edge P; -» R, indicates that process P, may request resource R, at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process P, requests resource

250

Chapter 7

Figure 7.6 Resource-allocation graph for deadlock avoidance.

R;, the claim edge] — R; is converted to a request edge. Similarly, when a

resource R; is released by P;, the assignment edge R; — P; is reconverted to
a claim edge P, — R;. We note that the resources must be claimed a priori in
the system. That is, before process P, starts executing, all its claim edges must
already appear in the resource-allocation graph. We can relax this condition by
allowing a claim edge P; — R; to be added to the graph only if all the edges
associated with process P; are claim edges. _

Suppose that process P, requests resource R;. The request can be granted
only if converting the request edge P; — R; to an assignment edge R; — P
does not result in the formation of a cycle in the resource-allocation graph. Note
that we check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of n* operations, where n is
the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in
an unsafe state. Therefore, process P; will have to wait for its requests to be
satisfied. :

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that P» requests R;. Although R is currently tree, we
cannot allocate it to P», since this action will create a cycle in the graph (Figure
7.7). A cycle indicates that the system is in an unsafe state. If P requests Ry,
and P; requests R, then a deadlock will occur.

Figure 7.7 An unsafe state in a resource-allocation graph.

7.5 : 251

7.5.3 Banker's Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker's algorithm. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
encugh resources.

Several data structures must be maintained to implement the banker’s
algorithm. These data structures encode the state of the resource-allocation
system. Let 1 be the number of processes in the system and m be the number
of resource types. We need the following data structures:

Available. A vector of length m indicates the number of available resources
of each type. If Available[f] equals k, there are k instances of resource type
R; available.

Max. An n x m matrix defines the maximum demand of each process.
If Max[i][j] equals k, then process P may request at most k instances of
resource type R;.

Allocation. An n x m matrix defines the number of resources of each type
currently allocated to each process. If Aflocation[i][j] equals k, then process
P; is currently allocated k instances of resource type R;.

Need. An n x m matrix indicates the remaining resource need of each
process. If Need[i][f] equals k, then process P may need k more instances of
resource type R; to complete its task. Note that Need[{][/] equals Max[i]}j]
— Allocation[i]lj].

These data structures vary over time in both size and value.

To simplify the presentation of the banker’s algorithm, we next establish
some notation. Let X and Y be vectors of length n. We say that X < Y if and
only if X[i] < Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y =
0321),thenY <« X. Y < XifY<Xand Y £ X.

We can treat each row in the matrices Allocation and Need as veclors
and refer to them as Allocation; and Need,. The vector Allocation; specifies
the resources currently allocated to process P;; the vector Need; specifies the
additional resources that process P; may still request to complete its task.

7.5.3.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithin can be described as fellows:

252

Chapter 7

Let Work and Finish be vectors of length m and #, respectively. Initialize
Work = Available and Finishli] = false fori=0,1,..,2 — L

. Find an i such that both
a. Finiehli] == false
b. Need; = Work
i such exdsts, go to step 4.

Waork = Work + Allocation,
Finisit[f] = frue
Go to step 2.

If Finish{i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m x 1 operations to determine whether
a state is sale.

7.5.3.2 Resource-Request Algorithm

We now describe the algorithm which determines if requests can be sately
granted.

Let Reguest, be the request vector for process Pi. If Request; [} == k. then
process P; wants k instances of resource type R;. When a request for resources
is made by process P, the following actions are taken:

If Reguest; < Need;, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.

If Request; = Available, go to step 3. Otherwise, P must wait, since the
resources are not available.

Have the system pretend to have allocated the requested resources to
process I; by modifying the state as follows:

Available = Available - Request;;
Allacation; = Allocation; + Request;;
Need; = Need; - Request;;

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P, is allocated its resources. However, if the new siate
is unsafe, then P, must wait for Request,, and the old resource-allocation
state is restored.

7.53.3 An Illustrative Example

Finaily, to illustrate the use of the banker’s algorithm, consider a system with
five processes Py through P4 and three resource types A, B, and C. Resource
type A has 10 instances, resource type B has 5 instances, and resource type C
has 7 instances. Suppose that, at time Ty, the following snapshot of the system
has been taken:

7.5 e dheob i 253

Allocation Max Auvailable

ABC ABC ABC
P, 010 753 332
) 200 322 '
P, 302 902
2 211 222
P, 002 433

The content of the matrix Need is defined to be Max ~ Allocation and is as
follows:

Need

ABC
Py 743
P 122w
P, 600
P 011
Py 431

We claim that the system is currently in a safe state. Indeed, the sequence
<Py, P3, Py, P2, Py> satisfies the safety criteria. Suppose now that process
Py requests one additional instance of resource type A and two instances of
resource type C, so Request; = (1,0,2). To decide whether this request can be
immediately granted, we first check that Reguest < Awvailable—that is, that
(1.0.2) = (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:

Allocatioﬁ Need Available

ABC ABC ABC
By 010 743 230
P 302 020
Py 302 600
Py 211 011
Py 002 431

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <Py, Ps, Py, Fo, Po>
satisfies the safety requirement. Hence, we can immediately grant the request
of process P.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0} by P; cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by P, cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise to implement the banker’s algo-
rithm.

o~

~

254

7.6

Chapter 7

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system must provide:

An algorithm that examines the state of the system to determine whether
a deadlock has occurred

An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-
detectior: algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nedes and collapsing the appropriate edges.

More precisely, an edge from P; to P; in a wait-for graph implies that
process P is waiting for process P; to release a resource that P; needs. An edge
P, — P; exists in a wait-for graph if and only if the correspording resource-
allocation graph contains two edges P: — R, and R, - P; for some resource

(b)

Figure 7.8 (a) Resource-allocation graph. (b) Gorresponding wait-for graph.

7.6 o 255

R,. For example, in Figure 7.8, we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle, To detect deadlocks, the system needs to maintain the wait-for
graph and periodically invoke ari algorithm that searches for a cyclein the graph.
An algorithm to detect a cycle in a graph requires an order of 12 operations,
where i is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker’s algorithm (Section 7.5.3);

Available. A vector of length i indicates the number of available resources
of each type.

Allocation. An i1 x m matrix defines the nuraber of resources of each type
currently allocated to each process.

Request. An n x m matrix indicates the current request of each process.
If Request[i]lj] equals &, then process P is requesting k more instances of
resource type R;.

The < relation between two vectors is defined as in Section 7.5.3. To simplify
notation, we again treat the rows in the matrices Allocation and Request as
vectors; we refer to them as Allocation; and Reguest;. The detection algorithm
described here simply investigates every possible allocation sequence for the
processes that remain to be completed. Compare this algorithm with the
banker s algorithm of Section 7.5.3.

Let Work and Finish be vectors of length m and 1, respectivelv. Initialize
Work = Available. For i = 0,1, ..., n-1, if Allocation, # 0, then Finish[i] = false;
otherwise, Finish[i] = true.

Find an index i such that both
a. Finishli] == false
b. Reguest; < Work

1f no such 7 exists, go to step 4.

Work = Work + Allocation;

Finish[i] = true

Go to step 2.

f Finish[i] == false, for some i, 0 < i< n, then the system is in a deadlocked
state. Moreover, if Finisi|i] == fulse, then process P, is deadlocked.

This algorithm requires an order of m x i° operations to detect whether the
svstem is in a deadlocked state,

256

Chapter 7 [hoo it

You may wonder why we reclaim the resources of process P; (in step 3)
as soon as we determine that Request; < Work (in step 2b). We know that P;
is currently not involved in a deadlock (since Request; < Work). Thus, we take
an optimistic attitude and assume that P; will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes Py
through P; and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time Ty, we have the following resource-allocation

sfate:

Allocation Request Auailable
ABC ABC ABC

Po 010 - 000 000
P 200 202
Py 303 000
Py 211 100
Py 002 002

We claim that the system isnotina deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Py, P, Ps, Pi, Py> results in
Linish[i] == true for all 4,

Suppose now that process P, makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Request

ABC
P, 000
P 202
p 001
P, 100
Py 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Py, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes Py, Py, P5, and Py
7.6.3 Detection-Aigorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

How often is a deadlock likely to occur?

How many processes will be affected by deadlock when it happens?

/

7.7

7.7 Heoovery bro P33k 257 .

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Peadlocks occur only when some process makes a request that cannot
be granted immediately. This request may be the final request that completes
a chain of waiting processes. In the extreme, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that “caused” the deadlock. (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and “caused” by the one identifiable
process,

Of course, if the deadlock-detection algorithm is invoked for every resource
request, this will incur a considerable overhead in computation time. A less
expensive alternative is simply to invoke the algerithm at less frequent intervals
—for example, once per hour or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and causes CPU
utilization to drop.) If the detection algorithm is invoked at arbitrary points in
time, there may be many cycles in the resource graph. In this case, we would
generally not be able to tell which of the many deadlocked processes “caused”
the deadlock.

+

Hecovery From Deadlock

When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Angther
possibility is to let the system recover from the deadlock automatically. (There
are two options for breaking a deadlock. One is simply to abort one ot ffiore
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

» Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long,time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

‘» Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since, after each process is aborted,
a deadlock-detection algorithm must be invoked to determine whether
any processes are still deadlocked.

258

Chapter 7

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CP’'U-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term minimum cost is not a precise one.
Many factors may affect which process is chosen, including:

What the priority of the process is

How long the process has computed and how much longer the process
will compute before completing its designated task

How many and what type of resources the process has used (for example,
whether the resources are simple to preempt)

How many more resources the process needs in order to complete
How many processes will need to be terminated

Whether the process is interactive or batch

7.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadiock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

Rollback. if we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

Starvation, How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

7.8 259

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

A deadlock state occurs when two or more processes are waiting indetinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlock state,

Allow the system to enter a deadlock state, detect it, and then recover.

Ignore the problem altogether and pretend that deadlocks never occur in
the system.

 J

The third selution is the one used by most operating systems, including UNIX
and Windows.

A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, held and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks that is less stringent than the prevention
algorithms requires that the operating system have a priori information on
how each process will utilize system resources. The banker’s algerithm, for
example, requires a priori information about the maximum number of each
resource class that may be requested by each process. Using this information,
we can define a deadlock-avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occuy, then a detection-and-recovery scheme must be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Finally, researchers have argued that none of the basic approaches alone
is appropriate for the entire spectrum of resource-allocation problems in
operating systems. The basic approaches can be combined, however, allowing
us to select an optimal approach for each class of resources in a system:.

260

e
b

s
[

Chapter 7 icedie b~

CJDDGDD

g

Figure 7.9 Traffic deadlock for Exercise 7.1.

FEL S o

7.1

7.2

7.3

7.4

Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule for avoiding deadlocks in this system.

Consider the deadlock situation that could occur in the dining-
philosophers problem when the philosophers obtain the chopsticks
one at a time. Discuss how the four necessary conditions for deadlock
indeed hold in this setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions.

Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overheads
b. System throughput

In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and
go, new resources are bought and added to the system. If deadlock is
controlled by the banker’s algorithm, which of the following changes
can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

7.5

7.6

7.7

7.8

el 261

a. Increase Available (new resources added).
b. Decrease Available (resource permanently removed from system).

c. Increase Max for one process (the process needs more resources
than allowed; it may want more).

d. Decrease Max for one process {the process decides it does not need
that many resources).

e. Increase the number of processes.

f. Decrease the number of processes.

Consider a system consisting of m resources of the same type being
shared by # processes. Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free
if the following two conditions hold:

a. The maximum need of each process is between 1 and m resources.

b. The sum of all maximum needs is less than m + n.

Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular
request could be satisfied without causing deadlock given the current
allocation of chopsticks to philosophers.

We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker’s scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.

Consider the following snapshot of a system:

Allocation Max Available

ABCD ABCD ABCD
Py 0012 0012 1520
P 1000 ~ 1750
Py 1354 2356
P 0632 0652
Py 0014 0656

Answer the following questions using the banker’s algorithm:
a. What is the content of the matrix Need?
b. Is the system in a safe state?

c. If a request from process P; arrives for (0,4,2,0), can the request
be granted immediately?

262

Chapter 7

7.9 Write a multithreaded program that implements the banker s algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
either Pthreads or Win32 threads. It is important that access to shared
data is safe from concurrent access. Such data can be safely accessed
using mutex locks, which are available in both the Pthreads and Win32
APL Coverage of mutex locks in both of these libraries is described in
“producer—consumer problem™ project in Chapter 6.

7.10 A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge can
become deadlocked if both a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable toback up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

Dijkstra [1965a] was one of the first and most influential contributors in the
deadlock area. Holt [1972] was the first person to formalize the notion of
deadlocks in terms of a graph-theoretical model similar to the one presented
in this chapter. Starvation was covered by Holt [1972]. Hyman [1985] provided
the deadlock example from the Kansas legislature. A recent study of deadlock
handling is provided in Levine {2003].

The various prevention algorithms were suggested by Havender [1968],
who devised the resource-ordering scheme for the IBM 05/360 system.

The banker’s algorithm for avoiding deadlocks was developed for a single
resource type by Dijkstra [1965a) and was extended to multiple resource types
by Habermann [1969]. Exercise 7.5 is from Holt [1971].

The deadiock-detection algorithm for multiple instances of a resource type,
which was described in Section 7.6.2, was presented by Coffman et al. [1971].

Bach [1987] describes how many of the algorithms in the traditional
UNIX kernel handle deadlock. Solutions to deadlock problems in networks
is discussed in works such as Culler et al. [1998] and Rodeheffer and Schroeder
[1991]. ’

The witness lock-order verifier is presented in Baldwin [2002].

Part Four

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, rmust be in main mermory
(at least partially) during execution.

To improve both the utilization of the CPU and the speed of its
response to users, the computer must keep several processes in
memaory. Many mermory-management schemes exist, reflecting various
approaches, and the effectiveness of each algorithm depends on the
situation. Selection of a memary-management scheme for a system
depends on many factors, especially on the hardware design of the
system. Each algorithm requires its own hardware support.

Memory -
Management

Strategies

8.1

In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer’s response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory. _

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially on the hardware design of the
system. As we shall see, many algorithms require hardware support, although
recent designs have closely integrated the hardware and operating system.

Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the
operands, results may be stored back in memory. The memory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore how a program
generates a memory address. We are interested only in the sequence of memory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to
the various techniques for managing memory. This includes an overview of
basic hardware issues, the binding of symbolic memory addresses to actual
physical addresses, and distinguishing between logical and physical addresses.

265

266

Chapter 8

We conclude with a discussion of dynamically loading and linking code and
shared libraries.

8.1.1 Basic Hardware

Main fnemory and the registers built into the processor itself are the only
storage that the CPU can access directly. There are machine instructions that take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions,
must be in one of these direct-access storage devices. If the data are not in
memory, they must be moved there before the CPU can operate on thern.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform simple
operations on register contents at the rate of one or more operations per
clock tick. The same cannot be said of main memory, which is accessed via
a transaction on the memory bus. Memory access may take many cycles of the
CPU clock to complete, in which case the processor normally needs to stall,
since it does not have the data required to complete the instruction that it
is executing. This situation is intolerable because of the frequency of memory
accesses. The remedy is to add fast memory between the CPUand main memory.
A memory buffer used to accommodate a speed differential, called a cache, is
described in Section 1.8.3.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation has to protect the operating
system from access by user processes and, in addition, to protect user processes
from one another. This protection must be provided by the hardware. It can be
implemented in several ways, as we shall see throughout the chapter. In this
section, we outline one possible implementation.

0

opetating
‘system

25600 '
process

30004 - { 30004 |
process base

42094 ——{«1209&]

limit

process

88000

102400

Figure 8.1 A base and a limit register define a logical address space.

8.1 ‘ 267

We first need to make sure that each process has a separate memory space.
To do this, we need the ability to determine the range of legal addresses that
the process may access and to ensure that the process can access only these
legal addresses. We can provide this protection by using two registers, usually
a base and a limit, as illustrated in Figure 8.1. The base register holds the
smallest legal physical memory address; the limit register specifies the size of
the range. For example, if the base register holds 300040 and limit register is
120900, then the program can legally access all addresses from 300040 through
420940 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users’ memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
{accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode;and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers’ contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating system and users” memory. This provision allows
the operating system to load users’ programs into users’ memory, to dump out
those programs in case of errors, to access and modify parameters of system
calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved

. base hase -+imit

).
pvey address S yes yes
p = . _..__,< > <
"
no

no

trap to operating system
monitor—addressing error memory

Figure 8.2 Hardware address protection with base and limit registers.

268 Chapter 8 Moo Sargeaent Soatesie e

source
program

compile
time

| load
time

execution
time {run
time)

dynamic
linking

Figure 8.3 Muttistep processing of a user program.

between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through several steps—some of which may be optional —before being
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as “14 bytes from the beginning of this module”). The linkage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

8.1 s 269

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

* Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The Ms-pDOs -COM-format programs are bound at
compile time.

* Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

* Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed i Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.

8.1.3 Logical Versus Physical Address Space

Anaddress generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into
the memory-address register of the memory—is commonly referred to as a
physical address.

The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In: this case,
we usually refer to the logical address as a virtual address. We use logical address
and virtual address interchangeably in this text. The set of all logical addresses
generated by a program is a logical address space; the set of all physical
addresses corresponding to these logical addresses is a physical address space.
Thus, in the execution-time address-binding scheme, the logical and physical
address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from many different methods to accomplish such mapping as we discuss in
Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme, which is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a relocation register
The value in the relocation register is added to every address generated by
user process at the time it is sent to memory (see Figure 8.4). For exanr
if the base is at 14000, then an attempt by the user to address locatic
dynamiically relocated to location 14000; an access to location 346 is -

Py

wniapier o

logicat physical
i | address address
‘CPU memo|
E 346 14346 i

Figure 8.4 Dynamic relocation using a relocation register.

to location 14346. The MS-DOS operating system running on the Intel 80x86
family of processors uses four relocation registers when loading and running
processes. oo

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses—all as the number 346. Only when itis used as a memory
address (in an indirect 1oad or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R +(to R + max for abase
value R). The user generates only logical addresses and thinks that the process
runs in locations 0 to max. The user program supplies logical addresses; these
logical addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

8.1.4 Dynamic Loading

In our discussion so far, the entire program and all data of a process must be in
physical memory for the process to execute. The size of a process is thus limited
to the size of physical memory. To obtain better memory-space utilization, we
can use dynamic loading. With dynamic loading, a routine is not loaded until
itis called. All routines are kept on disk in a relocatable load format. The main
program is loaded into memory and is executed. When a routine needs to
call another routine, the calling routine first checks to see whether the other
“~o has been loaded. If not, the relocatable linking loader is called to load
+ine into memory and to update the program’s address tables
nge. Then control is passed to the newly loaded routine.
1ge of dynamic loading is that an unused routine is never
ethod is particularly useful when large amounts of code are

o.1 R 271

needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded} may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows dynamically linked libraries. Some operating systems
support only static linking, in which system language libraries are treated
like any other object module and are combined by the loader into the
binary program image. The concept of dynamic linking is similar to that of
dynamic loading. Here, though, linking, rather than loading, is postponed
until execution time. This feature is usually used with system libraries, such as
language subroutine Jibraries. Without this facility, each program on a system
must include a copy of its language library (or at least the routines referenced
by the program) in the executable image. This requirement wastes both disk
space and main memory.

With dynamic linking, a stub is included in the image for each Lbrary-
routine reference. The stub is a small piece of code that indicates how to locate-
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particu’ar
- code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and all programs that reference the
library will automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library.
So that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use. Minor changes retain the same version number, whereas major changes
increment the version number. Thus, only programs that are compiled with
the new library version are affected by the incompatible changes incorporated
in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared libraries.

Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the

eeded routine is in another process’s memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4. '

272

8.2

Chapter 8 “Miomory-Monanpmend Sivatogies
Swaoping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 8.5). In the meantime; the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the
lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in.

Normally, a process that is swapped out will be swapped back into the
same memory space it.occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.

-~

8.2 TR 273

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and it must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Whenever
the CPU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let us assume that the user process is 10 MB in
size and the backing store is a standard hard disk with a transfer rate of 40 MB
per second. The actual transfer of the 10-MB process to or from main memory
takes

10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.

Assuming that no head seeks are necessary, and assuming an average latency
of 8 milliseconds, the swap time is 258 milliseconds. Since we must both swap
out and swap in, the total swap time is about 516 milliseconds.

For efficient CPU utilization, we want the execution time for each process
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling
algorithm, for example, the time quantum should be substantially larger than
0.516 seconds. ,

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If
we have a computer system with 512 MB of main memory and a resident
operating system taking 25 MB, the maximum size of the user process is 487
MB. However, many user processes may be much smaller than this—say, 10
MB. A 10-MB process could be swapped out in 258 milliseconds, compared
with the 6.4 seconds required for swapping 256 MB. Clearly, it would be useful
to know exactly how much memory a user process is using, not simply how
much'it might be using. Then we would need to swap only what is actually
used, reducing swap time. For this method to be effective, the user must keep
the system informed of any changes in memory requirements. Thus, a process
with dynamic memory requirements will need to issue system calls (request
memory and release memory) to inform the operating system of its changing
memory needs.

Swapping is constrained by other factors as well. If we want to swap
a process, we must be sure that it is completely idle. Of particular concern
is any pending 1/0. A process may be waiting for an 1/0 operation when
we want to swap that process to free up memory. However, if the 1/0 is
asynchronously accessing the user memory for 1/0 buffers, then the process
cannot be swapped. Assume that the I/0 operation is queued because the
device is busy. If we were to swap out process P, and swap in process P, the
1/0 operation might then attempt to use memory that now belongs to process
P;. There are two main solutions to this problem: Never swap a process with
pending 1/0, or execute I/0 operations only into operating-systen: buffers.

235

274

8.3

Chapter8 ...t Cgreaaledie el ot

Transfers between operating-system buffers and process memory then occut
only when the process is swapped in. -

The assumption, mentioned earlier, that swapping requires few, if any,
head seeks needs further explanation. We postpone discussing this issue until
Chapter 12, where secondary-storage structure is covered. Generally, swap
space is allocated as a chunk of disk, separate from the file system, so that its
use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too litthe execution time to be a reasonable
memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping is
normally disabled but will start if many processes are running and are using a
threshold amount of memory. Swapping is again halted when the load on the
system is reduced. Memory management in UNIX is described fully in Sections
21.7 and A.6.

Early PCs—which lacked the sophistication to implement more advanced
memory-management methods—ran multiple large processes by using a
modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old process is swapped to disk. This operating system, however, does not
provide full swapping, because the user, rather than the scheduler, decides
when it is time to preempt one process for another. Any swapped-out process
remains swapped out (and not executing) until the user selects that process to
run. Subsequent versions of Microsoft operating systems take advantage of the
advanced MMU features now found in PCs. We explore such features in Section
8.4 and in Chapter 9, where we cover virtual memory.

s & L

: L L R
PFEEL T R S R R

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate the parts of the main
memory in the most efficient way possible. This section explains one common
method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system and one for the user processes. We can place the operating
system in either low memory or high memory. The major factor affecting this
decision is the location of the interript vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in
low memory as well. Thus, in this text, we discuss only the situation where
the operating system resides in low memory. The development of the other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory.
In thiilcontiguous memory allocation, each process is contained in a single
contiglious section of memory.

83 o e 275 -

relocation
- segistar
— logical 3 physical
CP& address yes address
R¥ats < » + * memol
\ emory
no
trap: addressing error

Figure 8.6 Hardware suppart for relocation and limit registers.

8.3.7 Memory Mapping and Protection

Before discussing memory allocation further, we must discuss the issue of
memory mapping and protection. We can provide these features by using
a relocation register, as discussed in Section 8.1.3, with a limit register, as
discussed in Section 8.1.1. The relocation register contains the value of the
smallest physical address; the limit register contains the range of logical
addresses (for example, relocation = 100040 and limit = 74600). With relocation
and limit registers, each logical address must be less than the limit register; the
MMU maps the logical address dynamically by adding the value in the relocation
register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by the CPU is checked a gainst
these registers, we can protect both the operating system and the other users’
programs and data from being modified by this running process.

The relocation-register scheme provides an cffective way to allow the
operating-system size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system conta. s code and buffer
space for device drivers. If a device driver (or other operating-system service)
isnot commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.

8.3.2 Memory Allocation

Now we are ready to turn to memory allocation. One of the simpiest
methods for allocating memory is-to divide memory into several fixed-sized
partitions. Each partition may contain exactly one process. Thus, the degree
of multiprogramming is bound by the riumber of partitions. In this multiple-
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originafly

276

Chapter 8

used by the IBM (05/360 operating system (called MFT); it is no longer in use.
The method described next is a generalization of the fixed-partition scheme
{called MVT); it is used primarily in batch environments. Many of the ideas
presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.6).

In the fixed-partition scheme, the operating system keeps a table indicating
which parts of memory are available and which are occupied. Initially, all
memory is available for user processes and is considered one large block of
available memory, a hole. When a process arrives and needs memory, we search
for ahole large enough for this process. If we find one, we allocate only as much
memory as is needed, keeping the rest available to satisfy future requests.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory,
and it can then compete for the CPU. When a process terminates, it releases its
memory, which the operating system may then fill with another process from
the input queue. ‘

At any given time, we have a list of available block sizes and the input
queue. The operating system can order the input queue according to a
scheduling algorithm. Memory is allocated to processes until, finally, the
memory requirements of the next process cannot be satisfied —that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until a large enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements
of some other process can be met.

In general, at any given time we have a set of holes of various sizes scattered
throughout memory. When a process arrives and needs memory, the system
searches the set for a hole that is large enough for this process. If the hole is too
large, it is split into two parts. One part is allocated to the arriving process; the
other is returned to the set of holes. When a process terminates, it releases its
block of memory, which is then placed back in the set of holes. If the new hole
is adjacent to other holes, these adjacent holes are merged to form one larger
hole. At this point, the system may need to check whether there are processes
waiting for mgmory and whether this newly freed and recombined memory
could satisfy the demands of any of these waiting processeiztD

This procedure is a particular instance of the generalfdynamic storage-
allocation problem, which concerns how to satisfy a requ f size n from a
list of free holes. There are many solutions to this problem. The first-fit, best-fit,
and worst-fit strategies are the ones most commaonly used to select a free hole
from the set of available holes.

First fit. Allocate the first hole that is big enough. Searching can start either
at the beginning of the set of holes or where the previous first-fit search
ended. We can stop searching as soon as we find a free hole that is large
enough. '

Best fit. Allocate the smallest hole that is big enough. We must scazch the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole. .

8.3 B o et 277

Worst fit. Allocate the largest hole. Again, we must search the entire list,
uniess it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing time and storage utilization. Neither first fit nor best
fit is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

8.3.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from
external fragmentation. As processes are loaded and removed from memory,
the free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request, but the available
spaces are not contiguous; storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes, '

Whether we are using the first-fit or best-fit strategy can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.} Another factor is which end of a free block is allocated. (Which is
the leftover piece—the one on the top or the one on the bottom?} No matter
which algorithm is used, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process
size, external fragmentation may be a minor or a major problem. Statistical
analysis of first fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.
That is, one-third of memory may be unusable! This property is known as the
50-percent rule.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that
the next process requests 18,462 bytes. If we allocate exactly the requested
block, we are left with a hole of 2 bytes. The overhead to keep track of this
hole will be substantially larger than the hole itself. The general approach
to avoiding this problem is to break the physical memory into fixed-sized
blocks and allocate memory in units based on block size. With this approach,
the memory allocated to a process may be slightly larger than the requested
memory. The difference between these two numbers is internal fragmentation
—memory that is internal to a partition but is not being used.

One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents so as to place all free memory together
in one large block. Compaction is not always possible, however. If relocation
is static and is done at assembly or load time, compaction cannot be done;
compaction is possible only if relocation is dynamic and is done at execution
time. If addresses are relocated dynamically, relocation requires only moving
the program and data and then changing the base register to reflect the new
base address. When compaction is possible, we must determine its cost. The

278

84

Chapter8 oo i swre cin e

simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to
permit the logical address space of the processes to be noncontiguous, thus
allowing a process to be allocated physical memory wherever the latter
is available. Two complementary techniques achieve this solution: paging
(Section 8.4) and segmentation (Section 8.6). These techniques can also be
combined (Section 8.7).

wor
Tig okt

ace of a process to be noncontiguous.YPaging avoids the considerable
problem of fitting memory chunks of varying sizes onto the backing store; most
memory-management schemes used before the introduction of paging suffered
from this problem. The problem arises because, when some code fragments or
data residing in main memory need to be swapped out, space must be found
on the backing store. The backing store also has the fragmentation problems
discussed in connection with main memory, except that access is much slower,
so compaction is impossible. Because of its advantages over earlier methods,
paging in its various forms is commonly used in most operating systems.
Traditionally, support for paging has been handled by hardware. However,
recent designs have implemented paging by closely integrating the hardware
and operating system, especially on 64-bit microprocessors.

C;’?ing is a memory-management schemthat permits the physical address

logical physical .
address address | 10000 . ;. 0000

ou Te] L
1

fitlt ... 1111

f

physical
memory

page table

Figure 8.7 Paging hardware.

B84 i 279

frame
number

PLiiis i page tabie 3 pagp 2
togical 4| page 1

rmemory RV

7| page3

physical
memory

Figure 8.8 Paging model of logical and physical memory.

8.4.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from the backing store.
The backing store is divided into fixed-sized blocks that are of the same size as
the memory frames. '

The hardware support for paging is illustrated in Figure 8.7. Every address
generated by the CPU is divided into tiwo parts: a page number (p} and a
page offset (d). The page number is used as an index into a page table. The
page table contains the base address of each page in physical memory. This
base address is combined with the page offset to define the physical memory
address that is sent to the memory unit. The paging model of memory is shown
in Figure 8.8. ’

The page size (like the frame size} is defined by the hardware. The size
of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture. The selection of a power of 2
as a page size makes the translation of a logical address into a page number
and page offset particularly easy. If the size of logical address space is 2", and
a page size is 2" addressing units (bytes or words), then the high-order m — n
bits of a logical address designate the page number, and the 1 low-order bits
designate the page offset. Thus, the logical address is as follows:

page number page offset
| 2 o |

M~ 1

280

Chapter 8

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.9. Using a page size of 4 bytes and a physical memory of 32 bytes (8
pages), we show how the user’s view of memory can be mapped into physical
memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we
find that page 0 is in frame 5. Thus, logical address 0 maps to physical address
20 (= (5 x 4) + 0. Logical address 3 (page 0, offset 3) maps to physical address
23 (= (5 x 4) + 3). Logical address 4 is page 1, offset 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical
address 24 (= (6 x 4) + 0). Logical address 13 maps to physical address 9.

You may have noticed that paging itself is a form of dynamic relocation.
Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation) registers,
one for each frame of memory.

When we use a paging scheme, we have no external fragmentation: Any free
frame can be allocated to a process that needs it. However, we may have some
internal fragmentation. Notice that frames are allocated as units, If the memory
requirements of a process do not happen to coincide with page boundaries,

* the last frame allocated may not be completely full. For example, if page size

0|a | 0
1 b
21e
3ld
4. 4 a
R 0[5] i
7 LR 16} 2
IR 2[1] B [m’
9 1. e
10 k 3[2] 9
11f 1 page table P
12Im 12
13{n
4] 0
15| p |
logical memory 16
20 | 8-
b
c |
d
24 [®
9
-
28

physical memory

Figure 8.9 Paging ex'ample for a 32-byte memory with 4-byte pages.

84 Vioine 281

is 2,048 bytes, a process of 72,766 bytes would need 35 pages plus 1,086 bytes.
It would be allocated 36 frames, resulting in an internal fragmentation of 2,048
— 1,086 = 962 bytes. In the worst case, a process would need n pages plus 1
byte. It would be allocated n + 1 frames, resulting in an internal fragmentation
of almost an entire frame. :

If process size is independent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that small
page sizes are desirable. However, overhead is involved in each page-table
entry, and this overhead is reduced as the size of the pages increases. Also,
disk 1/0 is more efficient when the number of data being transferred is larger
(Chapter 12). Generally, page sizes have grown over time as processes, data
sets, and main memory have become larger. Today, pages typically are between
4 KB and 8 KB in size, and some systems support even larger page sizes. Some
CPUs and kernels even support multiple page sizes. For instance, Solaris uses
page sizes of 8 KB and 4 MB, depending on the data stored by the pages.
Researchers are now developing variable on-the-fly page-size support.

Usually, each page-table entry is 4 bytes long, but that size can vary as well.
A 32-bit entry can point to one of 2% physical page frames. If frame size is 4 KB,
then a system with 4-byte entries can address 2# bytes (or 16 TB) of physical
memory. :

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least # frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, and its frame number is put into the page table, and so on (Figure 8.10).

free-frame list
15

free-frame list
14
13
18
20
15

16

17
18 phager 2
19

20/page 4

new-process page table 21

@) (b)

Figure 8.10 Free frames (a} before allocation and (b) after allocation.

g -~

An important aspect of paging is the clear separation between the user’s
view of memory and the actual physical memory. The user program views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which also holds other
programs. The difference between the user’s view of memory and the actual
physical memory is reconciled by the address-translation hardware. The logicai
addresses are translated into physical addresses. This mapping is hidden from
the user and is controlled by the operating system. Notice that the user process
by definition is unable to access memory it does not own. It has no way of
addressing memory outside of its page table, and the table includes only those
pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory-—which frames are allocated,
which frames are available, how many total frames there are, and so on. This
information is generally kept in a data structure catled a frame table. The frame
table has one entry for each physical page frame, indicating whether the latter
is free or allocated and, if it is allocated, to which page of which process or
processes.

In addition, the operating system must be aware that user processes operate
in user space, and all logical addresses must be mapped to produce physical
addresses. If a user makes a system call (to do 1/0, for example) and provides
an address as a parameter (a buffer, for instance), that address must be mapped
to produce the correct physicat address. The operating system maintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresses whenever the operating system must map a logical address
to a physical address manually. 1t is also used by the CPU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

8.4.2 Hardware Support

Each operating system has its own methods for storing page tables. Most
allocate a page table for each process. A pointer to the page table is stored with
the other register values (like the instruction counter) in the process control
block. When the dispatcher is told to start a process, it must reload ‘the user
registers and define the correct hardware page-table values from the stored
user page table. '

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
registers. These registers should be built with very high-speed logic to make the
paging-address translation efficient. Every access to memory must go through
the paging map, so efficiency is a major consideration. The CPU dispatcher
reloads these registers, just a$ it reloads the other registers. Instructions to load
or modify the page-table registers are, of course, privileged, so that only the
operating system can change the memory map. The DEC PDP-11 is an example
of such an architecture. The address consists of 16 bits, and the page size is 8
KB. The page table thus consists of eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table is
reasonably small (for example, 256 entries). Most contempoerary computers,

however, allow the page table to be very large (for exampie, 1 million entries).
For these machines, the use of fast registers to 1mplement the page table is
not feasible. Rather, the pageé table is kept in main memory, and a page-table
base register (PTBR) points to the page table. Changing page tables regires
changing only this one register, substantially reducing context-switch nme

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into
the page table, using the value in the PTBR offset by the page number for ché/s.
This task requires a memory access. It provides us with the frame number,
which is combined with the page offset to produce the actual address. We
can then access the desired place in memory. With this scheme, two memory
accesses are needed to access a byte (one for the page-table entry, one for the
byte). Thus, memory access is slowed by a factor of 2. This delay would be
intolerable under most circumstances. We might as well resort to swapping!

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache, called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; the hardware,
however, is expensive. Typically, the number of entries in a TLB is small, often
numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, its page number is presented to the TLB. If the page number is found,
its frame number is immediately available and is used to access memory. The
whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. When the frame number is obtained,
we can use it to access memory (Figure 8.11). In addition, we add the page
number and frame number to the TLB, so that they will be found quickly on the
next reference. If the TLB is already full of entries, the operating system must
select one for replacement. Replacement policies range from least recently used
(LRU) to random. Furthermore, some TLBs allow entries to be wired down,
meaning that they cannot be removed from the TLB. Typically, TLB entries for
kernel code are wired down.

Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An
ASID uniquely identifies each process and is used to provide address-space
protection for that process. When the TLB attempts to resolve virtual page
numbers, it ensures that the ASID for the currently running process matches the
ASID associated with the virtual page. If the ASIDs do not match, the attempt is
treated as a TLB miss. In addition to providing address-space protection, an ASID
allows the TLB to contain entries for several different processes simultaneously.
If the TLB does not support separate ASIDs, then every time a new page table
is selected (for instance, with each context switch), the TLE must be flushed
(or erased) to ensure that the next executing process does not use the wrong
translation information. Otherwise, the TLB could include old eniries that
contain valid virtual addresses but have incorrect or invalid phys1cal addresses
left over from the previous process.

284

Chapter8 “lomary-niinageaionl Sloategis

— logical
v address

page frame
. number number

TLB hit

B

p {
TLB miss

physical
memory

page table

' . 7 ST
- Figure 8.11 Paging hardware with TLB.

The percentage of times that a particular page number is found in the TLB is
called the hit ratio. An 80-percent hit ratio méans that we find the desired page
number in the TLB 80 percent of the time. If it takes 20 nanoseconds to search
the TLB and 100 nanoseconds to access memory, then a mapped-memory access
takes 120 nanoseconds when the page number is in the TLB. If we fail to find the
page number in the TLB (20 nanoseconds), then we must first access memory
for the page table and frame number (100 nanoseconds) and then access the
desired byte in memory (100 nanoseconds), for a total of 220 nanoseconds. To
find the effective memory-access time, we weight each case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from
100 to 140 nanoseconds).
For a 98-percent hit ratio, we have

effective access time = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

‘This increased hit rate produces only a 22 percent slowdown in access time.

We will further explore the impact of the hit ratio on the TLB in Chapter 9.

8.4.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

8.4 . 285

One bit can define a page to be read—write or read-only. Every reference -
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attemplt to write to a read-only page causes a hardware trap to the operating
system {or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read-write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses. Iliegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid—invalid bit. When this bit is set to “valid,” the associated page is in the
process’s logical address space and is thus a legal (or valid) page. When the bit
is set torinvalid,” the page is not in the process’s logical address space. [llegal
addresses are trapped by use of the valid-invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Supposce, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468, Given a
page size of 2 KB, we get the situation shown in Figure 8.12. Addresses in pages
0.1,2, 3, 4 and 5 are mapped normally through the page table. Any attempt to
generate an address in pages 6 or 7, however, will find that the valid—invalid
bit is set to invalid, and the computer will trap to the operating system {invalid
page reference}).

0
1
2| page0
00000 —————— frame number vali—invalid bit
page 0 \ / 3| page i
oleo]v: ——
page1 1131 v 4 page?
2[4 v S
age 2 5
Pag 317 |v
page 3 4|8 v 6
519 |v
page 4 6lo]|i 7| page 3
7100
10,468} page 5 : 8| page 4
12,287 —1 page table I
9| page b
»
.
page n

Figure 8.12 Vafid (v) or invalid (i) bit in a page table,

286

Chapter 8

Notice that this scheme has created a problem. Because the program
extends to only address 10468, any reference beyond that address is illegal.
However, references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. This
problem is a result of the 2-KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use all its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

8.4.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This con-
sideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text
editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to
support the 40 users. If the code is reentrant code (or pure code), however, it
can be shared, as shown in Figure 8.13. Here we see a three-page editor-—each

ed1 0
ed2 1| datai
ed 3 2 data3
data 1 page table —— 3 ed1
e — for P, ed 1
process P, 3 4| ed2
ed 2
K 5
ed 3 H
6| ed3
data 2 page table
o for p2 dzta 2
ed

process P,

ed2
ed3 ?
2] n

data 3 page table
for P,

process Fy

Figure 8.13 Sharing of code in a paging environment.

8.4 e 287

page 50 kB in size (the large page size is used to simplify the figure)-—being
shared among three processes. Each process has its own data page.

Reentrant code is non-self-modifying code; it never changes during execu-
tion. Thus, two or more processes can execute the same code at the same time.
Each process has its own copy of registers and data storage to hold the data for
the process’s execution. The data for two different processes will, of course, be
different. '

Only one copy of the editor need be kept in physical memory. Each user’s
page table maps onto the same physical copy of the editor, but data pages are
mapped onto different frames. Thus, to support 40 users, we need only one
copy of the editor (150 KB), plus 40 copies of the 50 KB of data Space per user.
The total space required is now 2,150 KB instead of 8,000 KB—a significant
savings.

Other heavily used programs can also be shared —compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the
code must be reentrant. The read-only nature of shared code should not be
left to the correctness of the code; the operating system should enforce this
property.

The sharing of memory among processes on a system is similar to the
sharing of the address space of a task by threads, described in Chapter 4.
Furthermore, recall that in Chapter 3 we described shared memory as a method
of interprocess communication. Some operating systems implement shared
memory using shared pages.

Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages. We
will cover several other benefits in Chapter 9,

0
oy B
: 100 }—-
_ 500 Ny
- : \ : :
100 500
: .
708 .
—]
. 708
outer page il H
table N 900 ——
50 >< :
page of 929
page table
page table :
memory

Figure 8.14 A two-fevel page-table scheme.

288

8.5

Chapter 8

In this section, we explore some of the most common techniques for structuring
the page table.

8.5.1 Hierarchical Paging

Most modern computer systems support a large logical address space
(2% to 294, Tn such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit togical address space. If
the page size in such a system is 4 KB (212), then a page table may consist of
up to T million entries (2%2/2'2), Assuming that each-entry consists of 4 bytes,
each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this probtem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 8.14). Rernember our example of a 32-bit machine
with a page size of 4 KB. A logical address is divided into & page number
consisting of 20 bits and a page offset consisting of 12 bits. Because we page
the page table, the page number is further divided into a 10-bit page number
and a 10-bit page offset. Thus, a logical address is as tollows:

page number | page nffset
T R T
10 10 12

where p; is an index into the outer page table and ps is the displacemert
within the page of the outer page table. The address-translation method for thi
architecture is shown in Figure 8.15. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mappec
page table.

The VAX architecture also supports a varialion of two-level paging. The VA?
is a 32-bit machine with a page size of 512 bytes. The logical address space of .

process is divided into four equal sections, each of which consists of 2*° bytes

logical address

el

Pas
|

I > |

[_J e

ouler page —— 7

table L] dq i
page ot H_—T

page table 1

Figure 8.15 Address translation for a two-level 32-bit paging architecture.

8.5 E ALY 289

Each section represents a different part of the logical address space of a process.
The first 2 high-order bits of the logical address designate the appropriate
section. The next 21 bits represent the logical page number of that section, and
the final 2 bits represent an offset in the desired page. By partitioning the page
table in this manner, the operating system can leave partitions unused until a
process needs them. An address on the VAX architecture is as follows:

section page | offset
L s v 74]
2 21 °]

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 2% bits 4 bytes
per entry = 8 MB. S0 that main-memory use is reduced further, the VAX pages
the user-process page tables.

For a system with a 64-bit logical-address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let us suppose that the page
size in such a system is 4 KB (2'?). In this case, the page table consists of up
to 2°% entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 2!° 4-bvte entries, The addresses
look like this:

cuter page inner page | offset
i b1 Pz d _[
42 10 12

The outer page table consists of 2% entries, or 2* bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
This approach is also used on some 32-bit processors for added flexibility and
efficiency.

We can divide the ouler page table in various ways. We can page the outer
page table, giving us a three-level paging scheme. Suppose that the outer page
table is made up of standard-size pages (2 entries, or 212 bytes); a 64-bit
address space is still daunting; :

2nd outer page | outer page inner page | offset
s e | d

L

32 10 10 12

The outer page table is still 2% bytes in size.

The next step would be a four-level paging scheme, where the second-
level outer page table itself is also paged. The SPARC architecture (with 32-bit
addressing) supports a three-level paging scheme, whereas the 32-bit Motorola
68030 architecture supports a four-level paging scheme.

For 64-bit architectures, hierarchical page tables are generally considered
inappropriate. For example, the 64-bit UltrasPARC would require seven levels of

290

Chapter 8

paging —a prohibitive number of memory accesses—to translate each logical
address.

8.5.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.16.

A variation of this scheme that is favorable for 64-bit address spaces has
been proposed. This variation uses chustered page tables, which are similar to
hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

8.5.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter’s validity). This table representation is a natural
one, since processes reference pages through the pages’ virtual addresses. The
operating system must then translate this reference into a physical memory

physical
address

logical address

physical
LE N} memory

() Lot T Lot o1,

hash table

Figure 8.16 Hashed page table.

8.5 - :) T 291

address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is and
to use that value directly. One of the drawbacks of this method is that each
page table may consist of millions of entries. These tables may consume large °
amounts of physical memory just to keep track of how other physical memory
is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns that page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.17 shows the operation of an inverted page table. Compare
it with Figure 8.7, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.4.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the inverted
page table used in the 1BM RT. Each virtual address in the system consists of a
triple

<process-id, page-number, offset=.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table

logical .
: address physical
vty g T - address physicai
CPUT {palp [d] []dfF—— "oy
search l }i
pid [p
page table

Figure 8.17 Inverted page table.

292

8.6

Chapter 8

is then searched for a match. If a match is found—say, at entry i—then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need to
be searched for a match. This search wouid take far too long. To alleviate this
problem, we use a hash table, as described in Section 8.5.2, to limit the search
lo one—or at most a few—page-table entries. Of course, each access to the
hash table adds a memory reference to the procedure, so one virtual memory
reference requires at least two real memory reads—one for the hash-table
entry and one for the page table. To improve performance, recall that the TLB
is searched first, before the hash table is consulted.

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one
physical page cannot have two (or more) shared virtual addresses. A simple
technique for addressing this issue is to allow the page table to contain only
one mapping of a virtual address to the shared physical address. This means
that references to virtual addresses that are not mapped result in page faults.

An important aspect of memory management that became unavoidable with
paging is the separation of the user’s view of memory and the actual physical
memory. As we have already seen, the user’s view of memory is not the
same as the actual physical memory. The user’s view is mapped onto physical
memory. This mapping allows differentiation between togical memory and
physical memory.

8.6.1 Basic Method

Do users think of memory as a linear array of bytes, some containing
instructions and others containing data? Most people would say no. Rather,
users prefer to view memory as a collection of variable-sized segments, with
no necessary ordering among segments ({Figure 8.18).

Consider how you think of a program when you are writing it. You think
of it as a main program with a set of methods, procedures, or functions. It
may also include various data structures: objects, arrays, stacks, variables, and
so on. Each of these modules or data elements is referred to by name. You
talk about “the stack,” “the math library,” “the main program,” without caring
what addresses in memory these elements occupy. You are not concerned
with whether the stack is stored before or after the Sqrt () function. Each
of these segments is of variable length; the length is intrinsically defined by
the purpose of the segment in the program. Elements within a segment are
identified by their offset from the beginning of the segment: the first statement

8.6 : 293

subroutine rslack J l\\

Sqrt |

logical address
Figure 8.18 User’s view of a program.

of the program, the seventh stack frame entry in the stack, the fifth instruction
of the 8qrt (), and so on.

Segmentation is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments. Each
segment has aname and a length. The addresses specify both the segment name
and the offset within the segment. The user therefore specifics each address
by two quantities: a segment name and an offset. (Contrast this scheme with
the paging scheme, in vwhich the user specifies only a single address, which is
partitioned by the hardware into a page number and an offset, all invisible to
the programmer.)

For simplicity of implementation, segments are numbered and are referred
to by a segment number, rather than by a segment name. Thus, a logical address
consists of a twe tuple:

<segment-number, offset=.

Normally, the user program is compiled, and the compiler automatically
constructs segments reflecting the input program.
A C compiler might create separate segments for the following:

The code
Global variables
The heap, from which memory is allocated
The stacks used by each thread
The standard C library
Libraries that are linked in during compile time might be assigned separate

segments. The loader would take all these segments and assign them segment
numbers.

204

Chapter 8 T S PR

8.6.2 Hardware

Although the user can now refer to objects in the program by a two-dimensional
address, the actual physical memory is still, of course, a one-dimensional
sequence of bytes. Thus, we must define an implementation to map two-
dimensional user-defined addresses into one-dimensional physical addresses.
This mapping is effected by a segment table. Each entry in the segment table
has a segment base and a segment limit. The segment base contains the starting
physical address where the segment resides in memory, whereas the segment
limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.19. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index to the segment table. The offset 4 of
the logical address must be between 0 and the segment limit. If it is not, we trap
to the operating system (logical addressing attempt beyond end of segment).
When an offset is legal, it is added to the segment base to produce the address
in physical memory of the desired byte. The segment table is thus essenti:lly
an array of base-limit register pairs.

As an example, consider the situation shown in Figure 8.20. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory {or base) and
the length of that segment {or limit}. For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped
onto location 4300 + 53 = 4333. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

base —

segment
table
CPU —>| 5] d

Y ¥

s
- < Y +
no
L 4
{rap: addressing errof physical memory

Figure 8.19 Segmentation hardware.

8.7

T T
segment 3
1 symbel
segment o table

'\ s;,—?_ segment 4
rmain
\ program

segment 1 segment 2

logical address space

Figure 8.20 Example of segmentation.

8.7

segment table

segment 0

3200

segment 3

4300
4700

segment 2

5700 f——+

segment 4

6300
G700

ngrriant §

physical memory

295

Both paging and segmentation have advantages and disadvantages. In fact,
some architectures provide both. In this section, we discuss the Intel Pentium
architecture, which supports both pure segmentation and segmentation with
paging. We do not give a complete description of the memory-management
structure of the Pentium in this text. Rather, we present the major ideas on
which it is based. We conclude our discussion with an overview of Linux
address translation on Pentium systems.

In Pentium systems, the CPU generates logical addresses, which are given
to the segmentation unit. The segmentation unit produces a linear address for
each logical address. The linear address is then given to the paging unit, which
in turn generates the physical address in main mernory. Thus, the segmentation
and paging units form the equivalent of the memory-mana gement unit (MMU)}.
This scheme is shown in Figure 8.21.

logical
address | segmentation

CPU

linear

address

unit

paging
unit

physical
address

physical

memory

Figure 821 Logical to physical address transtation’in the Pentium,

296

Chapter 8

8.7.1 Pentium Segmentation

The Pentium architecture allows a segment to be as large as 4 GB, and the
maximum number of segments per process is 16 KB. The logical-address space
of a process is divided into two partitions. The first partition consists of up to
8 KB segments that are private to that process. The second partition consists
of up to 8 KB segments that are shared among all the processes. Information
about the first partition is kept in the local descriptor table (LDT); information
about the second partition is kept in the global descriptor table (GDT). Each
entry in the LDT and GDT consists of an 8-byte segment descriptor with detailed
information about a particular segment, including the basc location and limit
of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte (or word) within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byle microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
tor every memory reference.

The linear address on the Pentium is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a lingar address. First, the limit is used to check for address validity. If the
address is not valid, a memory fauit is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In

logical address | selector offset

descriptor table

segment descriptor

32-bit linear address

Figure 8.22 intel Pentium segmentation.

8.7 R e 297

the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.2 Pentium Paging

The Pentium architecture allows a page size of either 4 KB or 4 MB. For 4-KB
pages, the Pentium uses a two-level paging scheme in which the division of
the 32-bit linear address is as follows:

page number | bage offset
l 141 P I d |
10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.15. The Intel Pentium address translation is shown in more
detailin Figure 8.23. The ten high-order bits reference an entry in the outermost
page table, which the Pentium terms the page directory. (The CR3 register
points to the page directory for the current process.) The page directory entry
points to an inner page table that is indexed by the contents of the innermaost
ten bits in the linear address. F inally, the low-order bits 0-11 refer to the offset
in the 4-KB page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

ffogical address)

page directory) page tabte | offset

21 2221 [12 11 o]
— ———— —

page 4-KB
table page

|
- page
directory
i {
ORS —= 4-MB
ragister page
__ Page directory : offset ;
31 221 7 0

Figure 8.23 Paging in the Pentium architecture.

298

Chapter 8

To improve the efficiency of physical memory use, Intel Pentium page
tables can be swapped to disk. In this case, an invalid bit is used in the page
directory entry to indicate whether the'table to which the entry is pointing is
in memory or on disk. If the table is on disk, the operating system can use
the other 31 bits to specify the disk location of the table; the table then can be
brought into memory on demand.

8.7.3 Linux on Pentium Systems

As an illustration, consider the Linux operating system running on the Intel
Pentium architecture. Because Linux is designed to run on a variety of proces-
sors—many of which may provide only limited support for segmentation—
Linux does not rely on segmentation and uses it minimally. On the Pentium,
Linux uses only six segments:

A segment for kernel code
A segment for kernel data
A segment for user code
A segment for user data
A task-state segment (TSS)
A default LDT segment

The segments for user code and user data are shared by all processes
running in user mode. This is possible because all processes use the same logical
address space and all segment descriptors are stored in the global descriptor
table (GDT). Furthermore, each process has its own task-state segment (T55),
and the descriptor for this segment is stored in the GDT. The T5S is used to store
the hardware context of each process during context switches. The default LDT
segment is normally shared by all processes and is usually not used. However,
if a process requires its own LDT, it can create one and use that instead of the
default LDT.

As noted, each segment selector includes a 2-bit field for protection. Thus,
the Pentium allows four levels of protection. Of these four levels, Linux only
recognizes two: user mode and kernel mode.

Although the Pentium uses a two-level paging model, Linux is designed
to run on a variety of hardware platforms, many of which are 64-bit platforms
where two-level paging is not plausible. Therefore, Linux has adopted a three-
level paging strategy that works well for both 32-bit and 64-bit architectures.

The linear address in Linux is broken into the following four parts:

global middle page

directory directory table offset

Figure 8.24 highlights the three-level paging model in Linux.

The number of bits in each part of the linear address varies according
to architecture. However, as described earlier in this section, the Pentium
architecture only uses a two-level paging model. How, then, does Linux apply

8.8

8.8 299

{linear address)

| global directory | middle directory page table ; offset)
global
directory_ middle
' drectory page
i table page
global frame
directory entry N S page table
~ middle entry !
CR3 —sl] directory entry
register _]

Figure 8.24 Three-level paging in Linux.

its three-level model on the Pentium? In this situation, the size of the middle
directory is zero bits, effectively bypassing the middle directory.

Each task in Linux has its own set of page tables and—just as in Figure 8.23
—the CR3 register points to the global directory for the task currently executing.
During a context switch, the value of the CR3 register is saved and restored in
the TSS segments of the tasks involved in the context switch.

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged segmentation.
The most important determinant of the method used in a particular system is
the hardware provided. Every memory address generated by the CPU must be
checked for legality and possibly mapped to a physical address. The checking
cannot be implemented (efficiently) in software. Hence, we are constrained by
the hardware available.

The various memory-management algorithms (contiguous allocation, pag-
ing, segmentation, and combinations of paging and segmentation) differ in
many aspects. In comparing different memory-management strategies, we use
the following considerations:

Hardware support. A simple base register or a base—limit register pair is
sufficient for the single- and multiple-partition schemes, whereas paging
and segmentation need mapping tables to define the address map.

Performance. As the memory-management algorithm becomes more
complex, the time required to map a logical address to a physical address
increases. For the simple systems, we need only compare or add to the
logical address—operations that are fast. Paging and segmentation can be
as fast if the mapping table is implemented in fast registers. If the table is

300

Chapter 8

8.1
8.2

8.3

inmemory, however, user memory accesses can be degraded substantiallv.
A TLB can reduce the performance degradation to an acceptable level.

Fragmentation. A multiprogrammed system will generally perform more
efficiently if it has a higher level of multiprogramming. For a given
set of processes, we can increase the multiprogramming level oniv by
packing more processes into memory. To accomplish this task, we must
reduce memory waste, or fragmentation. Systems with fixed-sized allo-
cation units, such as the single-partition scheme and paging, sufter from
internal fragmentation. Systems with variable-sized allocation units, such
as the multiple-partition scheme and segmentation, suffer from external
fragmentation.

Relocation. One solution to the external-fragmentation problem is com-
paction. Compaction involves shifting a program in memory in such a
way that the program does not notice the change. This consideration
requires that logical addresses be relocated dynamically, at execution time.
If addresses are relocated only at load time, we cannot compact storage.

Swapping. Swapping can be added to any algorithm. At intervals deter-
mined by the operating system, usually dictated by CPU-scheduling poli-
cies, processes are copied from main memory to a backing store and later
are copied back to main memory. This scheme allows more processes to be
run than can be fit into memory at one time.

Sharing. Another means of increasing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used, to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but shared
programs and data must be designed carefully.

Protection. If paging or segmentation is provided, different sections of a
user program can be declared execute-only, read-only, or read —write. This
restriction is necessary with shared code or data and is generally useful
in any case to provide simple run-time checks for common programming
eTTorS.

Explain the difference between internal and external fragmentation.

Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linkage
editor is used to combine multiple object modules into a single program
binary. How does the linkage editor change the binding of instructions
and data to memory addresses? What information needs to be passed
from the compiler to the linkage editor to facilitate the memory binding
tasks of the linkage editor?

Most systems allow programs to allocate more memory to its address
space during execution. Data allocated in the heap segments of programs

8.4

8.5

8.6

8.7

8.8

B.9

8.10

8.11

3N
is an example of such allocated memory. What is required to support
dynamic memory allocation in the following schemes?
a. contiguous-memory allocation
b. pure segmentation
€. pure paging

Compare the main memory organization schemes of contiguous-
memory allocation, pure segmentation, and pure paging with respect
to the following issues:

a. external fragmentation
b. internal fragmentation
c. ability to share code across processes

Compare paging with segmentation with respect to the amount of
memory required by the address translation structures in order to
convert virtual addresses to physical addresses.

Program binaries in many systems are typically structured as follows.
Code is stored starting with a small fixed virtual address such as 0. The
code segment is followed by the data segment that is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual address space and is allowed to
grow towards lower virtual addresses. What is the significance of the
above structure on the following schemes?

a. contiguous-memory allocation
b. pure segmentation
¢. pure paging

Why are segmentation and paging sometimes combined into one
scheme?

Explain why sharing a reentrant module is easier when segmentation is
used than when pure paging is used.

What is the purpose of pagihg the page tables?

Consider the hierarchical paging scheme used by the VAX architecture.
How many memory operations are performed when an user program
executes a memory load operation?

Consider the Intel address-translation scheme shown in Figure 8.22,

a. Describe all the steps taken by the Intel Pentium in translating a
logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation?

¢. Are there any disadvantages to this address-translation system? [f
so, what are they? If not, why is it not used by every manufaciurer?

302

Chapter 8

L L T T SRR I Btk d Soce

Dynamic storage allocation was discussed by Knuth [1973] (Section 2.5), who
found through simulation results that first fit is generally superior to best fit.
Knuth [1973] discussed the 50-percent rule.

The concept of paging can be credited to the designers of the Atlas system,
which has been described by Kilbum et al. [1961] and by Howarth et al.
[1961]. The concept of segmentation was first discussed by Dennis [1965].
Paged segmentation was first supported in the GE 645, on which MULTICS was
originally implemented (Organick [1972]} and Daley and Dennis [1967]).

Inverted page tables were discussed in an article about the IBM RT storage

'inanager by Chang and Mergen [1988].

Address translation in software is covered in Jacob and Mudge [1997}.

Hennessy and Patterson [2002] discussed the hardware aspects of TLBs,
caches, and MMUs. Talluri et al. [1995] discusses page tables for 64-bit address
spaces. Alternative approaches to enforcing memory protection are proposed
and studied in Wahbe et al. [1993a], Chase et al. {1994], Bershad et al. [1995],
and Thorn {1997). Dougan et al. {1999] and Jacob and Mudge [2001] discuss
techniques for managing the TLB. Fang et al. [2001] evaluate support for large
pages.

g'I'am*-.-r'lbamm [2001] discusses Intel 80386 paging. Memory management for

several architectures—such as the Pentium II, PowerPC, and UltraSPARC— .
was described by Jacob and Mudge [1998a]. Segmentation on Linux systems is
presented in Bovet and Cesati [2002]

